

Tension Pneumothorax Management with Capnospot® Clinical Procedural Guide

Purpose:

To provide procedural guidance for needle thoracostomy while utilizing the Capnospot[®].

1. Indications for Use:

For patients with known or suspected tension pneumothorax. Used for more accurate placement of pneumothorax decompression devices than the current standard of care auditory assessments^{1,2}.

2. Signs and Symptoms of Tension Pneumothorax:

- a. Self-Ventilating Patients: Tension pneumothorax detected via advanced imaging, clinical suspicion, or known traumatic injury to the chest, back, or abdomen, with severe or progressive respiratory distress associated with <u>at least</u> one or more of the following signs and symptoms^{3,4}:
 - i. Severe or progressive tachypnea
 - ii. Severe or progressive dyspnea
 - iii. Tachycardia
 - iv. $SpO_2 < 90\%$
 - v. Absent or diminished lung sounds on the affected side
 - vi. Hypotension
 - vii. Persistent loss of consciousness
 - viii. Traumatic cardiac arrest without obviously fatal wounds
- b. For Positive Pressure Or Mechanically Ventilated Patients: Tension pneumothorax detected via advanced imaging, clinical suspicion, or known traumatic injury to the chest, back, or abdomen, and at least two or more of the following symptoms presenting with a rapid onset^{3,4}:
 - i. Severe and progressive respiratory distress in the conscious selfventilating patient (CPAP or Bi-level Ventilation)
 - ii. Severe or progressive tachypnea during administration of CPAP or Bi-Level Ventilation
 - iii. Tachycardia
 - iv. $SpO_2 < 90\%$

- v. Hypotension
- vi. Decrease of compliance during ventilation
- vii. Acutely increased or progressive ventilatory requirements (e.g. Reduced tidal volume with pressure control or high peak pressure with volume control)
- viii. Subcutaneous emphysema
- ix. Absent or diminished lung sounds on the affected side
- x. Loss of consciousness (while receiving CPAP or Bi-level Ventilation)
- xi. Cardiac arrest without other known etiology

3. Identification of Landmarks and Site Preparation for Needle Thoracostomy:

- a. 2nd Intercostal Space Midclavicular line:
 - i. Identification of the sternal notch (Figure 1)
 - ii. Identification of the sternoclavicular joint (Figure 1)
 - iii. Identification of the acromioclavicular joint (Figure 1)
 - iv. Identification of the clavicle mid-point (midclavicular line) (Figure 1.)
 - v. Identification of the 2nd intercostal space (above the third rib midclavicular line, at the sternal ridge, or sternal Angle of Louis) (Figure 1)
 - vi. Identify the intersection between the vertical midclavicular line and a horizontal line running laterally from the Angle of Louis (Figure 1)
 - vii. Confirm location by firmly palpating the 3rd rib on the midclavicular line (Figure 1)
 - viii. Cleanse the site by applying antiseptic wipe or solution if available

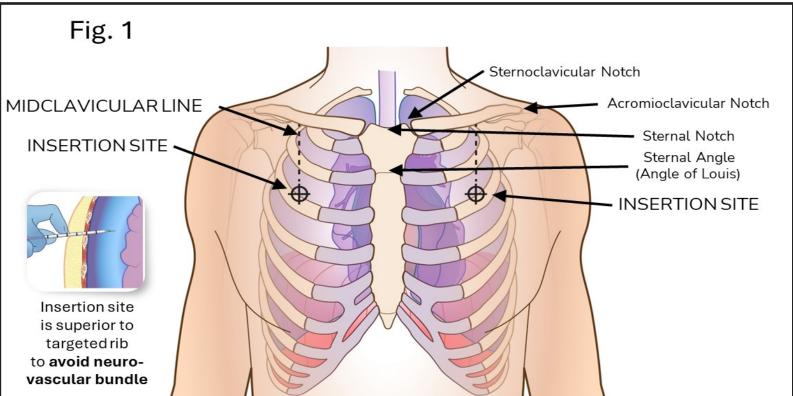
b. 4th or 5th Intercostal Space Anterior Axillary Line:

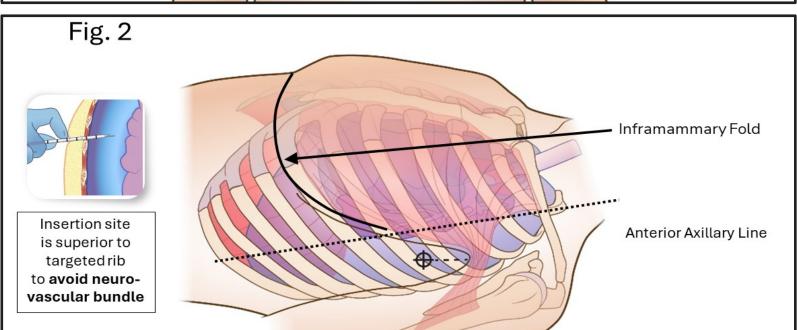
- i. Identify the Inframammary fold (Figure 2)
- ii. Moving laterally, the landmark is immediately behind the edge of the pectoralis major muscle (Figure 2)
- iii. Cleanse the site by applying antiseptic wipe or solution if available

4. Prepare Equipment:

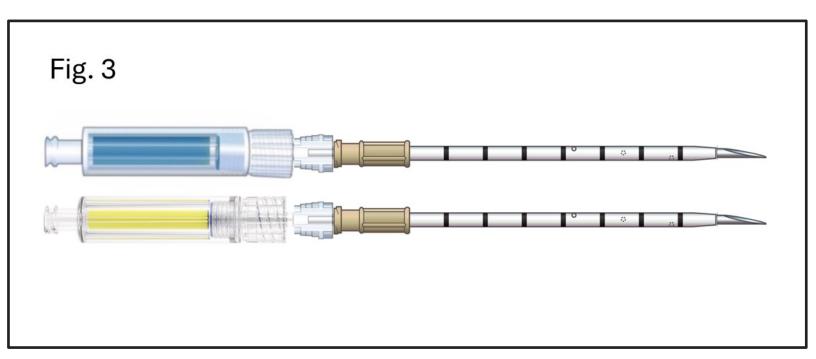
a. Affix the Capnospot[®] male Luer connector to the female Luer connection of an appropriately sized needle decompression device (Figure 3). This device features a built-in one-way valve

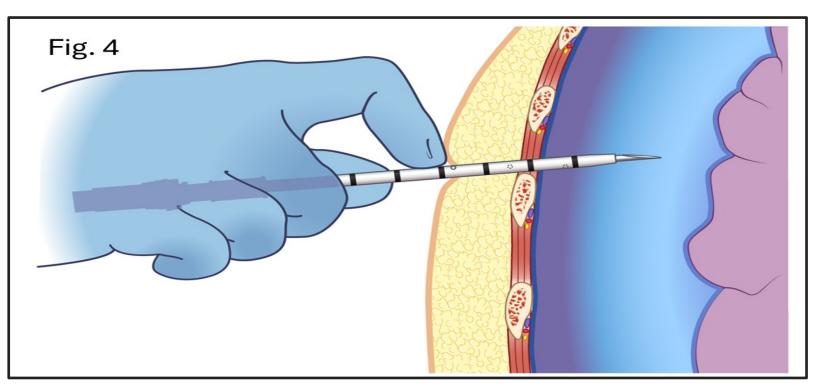
Insert the Decompression Device:

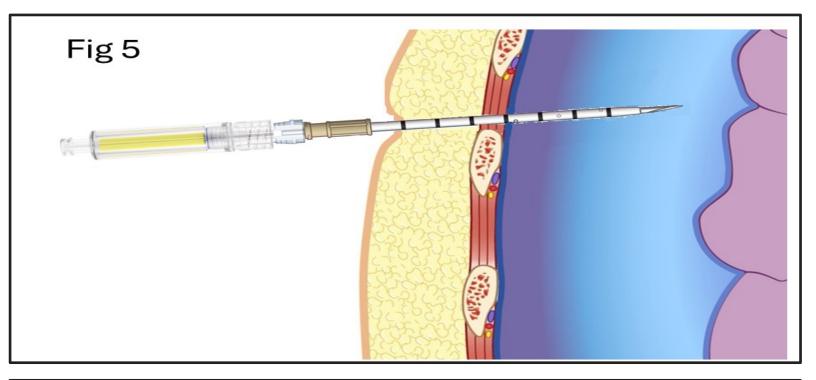

- a. Penetrate the skin advancing the decompression device at a 90-degree angle through the chest wall just above the rib and into the plural space (Figure 4)^{3,4}
- **b.** Advance the catheter through the chest wall until a positive indication of CO_2 is observed via Capnospot[®] or a "pop" is felt upon entering the plural space^{2–6}
- c. Hold the decompression device in place for approximately 10 seconds and observe for visible color change in the Capnospot[®] indication chamber (Figure 5). Even If no observed color change, proceed to step \mathbf{d}^{3-6}
- **d.** Advance the catheter hub of the decompression device over the needle to the plane of the patient's skin ^{3,4}
- e. Remove Capnospot[®] from the needle of the commercially available (5-8cm, 10 gauge) decompression device and dispose of the needle in an appropriate sharp securement device^{3,7,8}
- **f.** Reapply the Capnospot[®] to the catheter for ongoing assessment of catheter patency based on the color changing indicator (Figure 6)⁵
- g. Secure the catheter per institutional policy

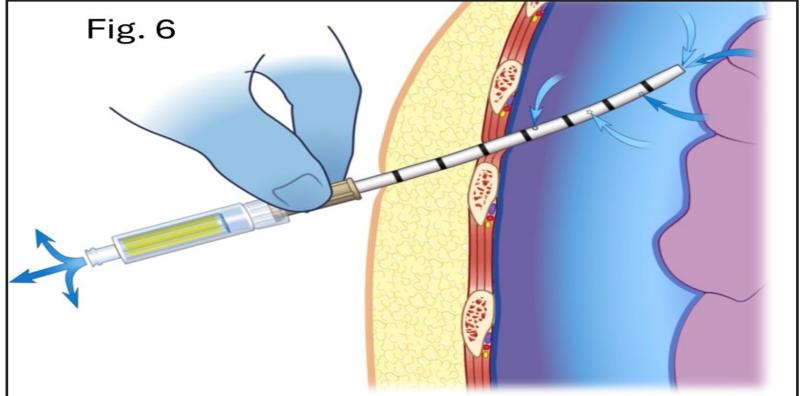

5. Monitor Patient for Improvement of Vital Signs:

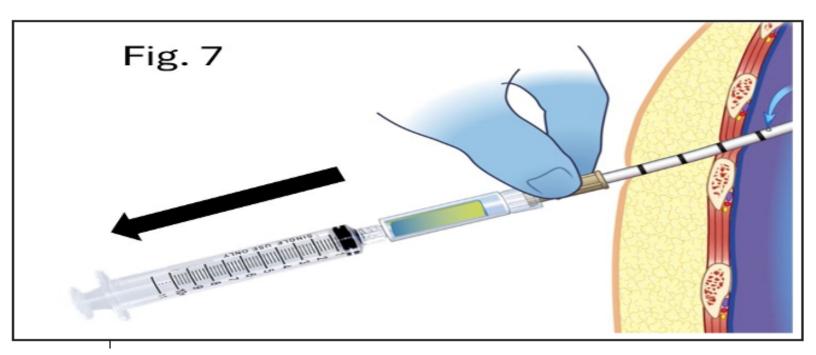
- **a.** Monitor Capnospot® for continuous confirmation of catheter patency by visualization of a yellow color within color changing indicator⁵
- **b.** Increase in SPO₂; Improvement of patient blood pressure; improvement of tachypnea and shortness of breath^{3,4,7}
- c. If the Capnospot® color changing indicator presents a blue color, attach a 10mL syringe to the female Luer connection of Capnospot® and attempt to aspirate air. If the Capnospot® does not change to a yellow color or air is unable to be aspirated without resistance, evaluate the catheter for displacement or obstruction (Figure 7)^{3–5,7,9}
- **d.** If catheter displacement occurs, evaluate the patient for further clinical deterioration and consider the placement of a second commercially available decompression device with Capnospot® affixed^{3–5,9}
- **e.** The Capnospot® may be kept in place to confirm catheter patency until definitive care is reached⁵




Figures







Works Cited

- 1. Zietlow J, Hernandez M, Bestland A, et al. "Decompression of tension pneumothorax in a trauma patient –first use of a novel decompression colorimetric capnography device in human patient." *Gen Thorac Cardiovasc Surg.* 2021;69(2):391-393. doi:10.1007/s11748-020-01471-7
- 2. Naik ND, Hernandez MC, Anderson JR, Ross EK, Zielinski MD, Aho JM. Needle Decompression of Tension Pneumothorax with Colorimetric Capnography. *Chest*. 2017;152(5):1015-1020. doi:10.1016/j.chest.2017.04.179
- 3. Butler F, Holcomb J, Shackelford S, et al. *Management of Suspected Tension Pneumothorax in Tactical Combat Casualty Care TCCC Guidelines Change 17-02*. Accessed April 9, 2024. https://www.jsomonline.org/Updates/2018219Butler.pdf
- 4. Leigh-Smith S, Harris T. Tension pneumothorax Time for a re-think? *Emergency Medicine Journal*. 2005;22(1):8-16. doi:10.1136/emj.2003.010421
- 5. Aho JME, Sackner-Bernstein J, Mcdougall V. 510(K) SUMMARY ADMINISTRATIVE INFORMATION Date of Summary Preparation: March 28 Th. Vol 6.
- 6. Musa J, Zielinski M, Hernandez M, et al. Tension pneumothorax decompression with colorimetric capnography: pilot case series. *Gen Thorac Cardiovasc Surg.* 2022;70(1):59-63. doi:10.1007/S11748-021-01686-2
- 7. Laan D V., Vu TDN, Thiels CA, et al. Chest wall thickness and decompression failure: A systematic review and meta-analysis comparing anatomic locations in needle thoracostomy. *Injury*. 2016;47(4):797-804. doi:10.1016/j.injury.2015.11.045
- 8. Aho JM, Thiels CA, El Khatib MM, et al. Needle thoracostomy: Clinical effectiveness is improved using a longer angiocatheter. *Journal of Trauma and Acute Care Surgery*. 2016;80(2):272-277. doi:10.1097/TA.0000000000000889
- 9. Norris EA, McEvoy CS, Leatherman ML, et al. Comparison of 10- versus 14-gauge angiocatheter for treatment of tension pneumothorax and tension-induced pulseless electrical activity with hemorrhagic shock: Bigger is still better. In: *Journal of Trauma and Acute Care Surgery*. Vol 89. Lippincott Williams and Wilkins; 2020:S132-S136. doi:10.1097/TA.0000000000002724